Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
نویسندگان
چکیده
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.
منابع مشابه
Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters
The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, an...
متن کاملComputer simulations of alkali-acetate solutions: Accuracy of the forcefields in difference concentrations.
When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be c...
متن کاملCrystal lattice properties fully determine short-range interaction parameters for alkali and halide ions.
Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting...
متن کاملF-CENTER ELECTRON QUANTIZATION IN ALKALI HALIDE CRYSTALS Background Alkali halides and alkaline earth halides are strongly ionic compounds
Alkali halides and alkaline earth halides are strongly ionic compounds that solidify as crystals. The name for the alkali elements (Li, Na, K, Rb and Cs) comes from the Arabic word alqili (ashes of the salt-wort plant that was once used as a source of sodium and potassium for making glass from sand). The name for the halogen elements (F, Cl, Br, I—and the rare radioactive element astatine) come...
متن کاملSulfoxide-mediated Umpolung of alkali halide salts.
A new protocol for the direct two-electron oxidative Umpolung of alkali halide salts is reported. This procedure, relying on the use of a commercially available sulfoxide as the oxidant, allows the electrophilic halogenation of carbonyl compounds as well as halolactonisation reactions to proceed from the corresponding sodium salts, at room temperature and under mild conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 112 شماره
صفحات -
تاریخ انتشار 2008